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Technical Section 

EFFICIENT ALGORITHMS FOR AUTOMATIC 
VIEWER ORIENTATION 

DAVID P. ANDERSON 
Computer Sciences Department, University of Wisconsin-Madison, 1210 West Dayton Street, 

Madison, WI 53706, U.S.A. 

AbstractmThe calculation of a perspective image of an object involves the position and orientation of the 
viewer. In many graphics applications the viewpoint and object are fixed, and an orientation is sought in 
which the object is "centered" in the field of view. Previous work has proposed that the viewing direction 
be the axis of the narrowest circular cone emanating from the viewpoint and containing the object, and has 
shown how this direction can be calculated based on the viewpoint and a set ofn object points which includes 
the object's extreme points, This paper presents algorithms which efficiently accomplish this task, in O(n) 
average and O(n log(n)) worst-case time. The orientation problem is converted into a problem in spherical 
geometry, and the proposed algorithms are based on existing algorithms for the analogous plane geometry 
problems. 

!. INTRODUCTION 
The orientation of a viewer in three-space is described 
by unit vectors R, A and U representing the right, ahead 
and up directions, respectively. These vectors must 
satisfy 

A = U × R ,  U = R × A .  (1) 

criterion: The optimal "'ahead" vector A is the axis o f  
the circular cone with vertex P of least vertex angle 
which encloses the object, if such a cone exists. This 
choice of A minimizes the maximum local distortion 
due to perspective projection, and provides a feasible 
orientation if one exists. Once A is determined, the 
orientation given by 

In the viewer cooi'dinate system the viewpoint V is the 
origin and R, A and U are basis vectors. The viewer 
coordinates of a point p are (r, a, u), where 

r = ( p  - V ) .  R ,  a = ( p  - V ) .  A ,  

u = ( p  - V ) .  U.  (2) 

The image plane for perspective projection is the 
plane normal to A and passing through the point 
(V + A). Its natural coordinate system has origin V 
+ A and basis vectors R and U. The perspective image 
of an object point p is the intersection of the line con- 
taining p and V with the image plane. If (r, a, u) 
are the viewer coordinates of  p as given by (2), the 
image plane coordinates of the image o f p  are (x, y), 
where 

r u 
x = - ,  y = -  (3) a a 

If a is nonpositive then p is not visible to a viewer in 
the given position and orientation, and its projection 
is not defined. An orientation will be called feasible 
for a particular viewpoint and object if a is positive 
for all object points, that is, if the object is entirely in 
front of the viewer. 

Given a position Vand an object, what is the optimal 
orientation? Intuitively, we want to look towards the 
center of the object. One could take this to mean the 
center of mass of the object, or the center of the smallest 
box containing the object, but these ad hoc choices are 
inadequate in some cases, particularly when the view- 
point is close to the object. Anderson [1] proposes this 

A x (0,0, I) 
R=IAX(0,0,1) [, U=RX.~ (4) 

is optimal in the sense that U makes as small as possible 
an angle with the (0, 0, 1) direction, which we assume 
is the "up" direction in 3-space. 

For our purposes, the object to be drawn will be 
represented by a finite set Xofpoin ts  in 3-space, whose 
convex hull includes the object. If the object is poly- 
hedral, X can be its vertex set. Curved or textured ob- 
jects can be represented by the vertices of an enclosing 
polyhedron. The orientation based on these points will 
then approximate the optimal orientation for the orig- 
inal object. 

Translating X if necessary, we may assume that V 
is the origin. It is then clear that multiplying the ele- 
ments of X by positive scalars does not affect the so- 
lution. Let F b e  the set of the vectors in X normalized 
to length one. Then the smallest cone enclosing X is 
generated by the smallest circle on the sphere that en- 
closes Y(Fig. l). This circle is determined by the points 
of Y which are extreme in the geometry of the sphere 
(defined in Section 2). These spherical extrema are not 
to be confused with the extreme points o fXin  R3; each 
spherical extremum in Y arises from an extreme point 
of X, but not conversely. 

An algorithm for finding the smallest enclosing circle 
(and hence the optimal viewing direction) is given in 
[1]: the h spherical extrema are found in O(n 2) time. 
An O(h () worst-case procedure then finds the smallest 
circle enclosing these points. Since all the points may 
be spherical extrema, the worst case time is O(n(). This 
is unacceptably large since X may contain thousands 
of points. 
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Fig. 1. The smallest cone and smallest circle problems. 

Lawson [8], motivated by an application outside 
computer graphics, points out that the problem can be 
solved by finding the smallest sphere in 3-space which 
encloses Y, and intersecting this with the unit sphere. 
The resulting circle is the smallest enclosing circle. He 
refers to an iterative algorithm for approximating the 
smallest enclosing sphere. The convergence rate, how- 
ever, appears to be poor even for small sets of points. 

This paper describes three algorithms: 
( l ) An O(n log(n)) worst-cast algorithm for finding 

the convex hull (i.e. an ordered list of the extreme 
points) of n points on the sphere. For certain input 
distributions the average runtime is O(n). 

(2) An O(n log(n)) algorithm for finding the smallest 
circle enclosing n points on the sphere, making use of 
the farthest-point spherical Voronoi diagram of the set. 

(3) An algorithm for finding the smallest circle en- 
closing a set of points on the sphere, given its n-vertex 
convex hull. This algorithm is simpler than (2) and is 
slow (O(n2)) in the worst case but may be O(n) on the 
average. 

These algorithms can be combined in several ways 
to solve the optimal orientation problem: 

(A) Use (2) by itself. 
(B) Use (l) to find the extreme points, followed 

by (2). 
(C) Use (1) to find the convex hull, followed by (3). 

2. SPHERICAL GEOMETRY--DEFINITIONS 

In spherical geometry, we consider only points that 
lie on the surface of the unit sphere. A great circle is 
a circle of radius one on the sphere. Great circles play 
the role of lines. A small circle is a circle on the sphere 
which is not a great circle. A small circle divides the 
sphere into two regions; its interior is the smaller of 
these. 

The opposite of a set of points is its reflection through 
the origin. The segment between two nonopposite 
points p and q is the shorter arc of the great circle 
containing them. The distance d(p, q) between p and 
q is the length of this arc. The midpoint ofp  and q is 
the point on this arc equidistant from p and q. 

A set is hemispherical iff it is contained in some 
open half-sphere. A set X is convex iff either it is the 
entire sphere, or it is hemispherical and whenever p, q 

X, the segment between p and q is also in X. The 
convex hull of a set X is the intersection of all convex 
sets containing X; this set is itself convex, l fX is finite 
and hemispherical its convex hull is polygonal: the 
vertices of this polygon are in X and are called the 
extreme points of X. 

We will sometimes refer to a clockwise or counter- 
clockwise traversal of a hemispherical closed curve. 
The direction is relative to a viewpoint outside the 
sphere from which the entire curve is visible. 

For computational purposes, a spherical point can 
be represented as a unit vector in 3-dimensional Carte- 
sian coordinates. The distance d(p, q) is the angle be- 
tween the vectors p and q. A line (great circle) can be 
represented by either unit normal vector of the plane 
containing it. A particular normal vector corresponds 
to a direction of the line. One can determine whether 
a point lies to the left or right of a directed line by 
projecting the point's vector onto the line's normal. 
The statement "r lies to the right of the segment from 
p to q" means 

r . (q × p) > O. (5) 

The two intersections of a pair of great circles are the 
normalized cross-product of the two normal vectors, 
and its negative. 

We will speak of ordering a set X of points according 
to their angle about a point p. This can be done by 
constructing the tangent plane to the sphere at p, pro- 
jecting the vectors from p to points in X onto this plane, 
and ordering the projections about some direction in 
the plane. The vertices of a convex spherical polygon, 
traversed in a particular direction, have monotonic 
angles about any point in the interior of the polygon. 

3. A SPHERICAL CONVEX HULL ALGORITHM 
Numerous algorithms have been proposed for find- 

ing the convex hull of a set of points in the plane, and 
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Fig. 2, Graham's convex hull algorithm on the sphere. (a) shows the points sorted in angular order around p~. (b) shows the 
convex hull; the dotted segments are those eventually deleted from the tail of the list q, and the dashed segments are those 

eventually deleted from the head. 

many of these can be adapted to spherical geometry. 
Certain dit~culties can arise; for example, in planar 
geometry the four points with extreme x or y coordi- 
nates are always extreme points, whereas in the sphere 
no coordinate system has a similar property. In addi- 
tion. a spherical convex hull algorithm must be able 
to detect nonhemispherical sets. 

The following spherical convex hull algorithm is an 
adaptation of the planar algorithm proposed by Gra- 
ham [7] (see Fig. 2): 

mum),  and so deletions need be done only from the 
tail of  the list q, whereas here deletions are done from 
both ends; (b) in the plane the special case of a non-  
hemispherical set does not exist; in the sphere (but not 
in the plane) it is possible for a point to lie on the 
"wrong side" of all the edges of a convex polygon, 

Proof of correctness for the algorithm has two parts: 
(1) Proof that it works correctly when the set is 

hemispherical. This is similar to the planar proof and 
we omit  it. 

Input: n spherical points Pl . . . .  , P., 
Output:  a list qj . . . . .  qk of the vertices of the convex hull of  PI . . . . .  P.,  

traversed clockwise, or an indication that the set is not hemispherical. 
If one of p2 . . . . .  p.  is opposite p l ,  stop (the set is not hemispherical). 
Reorder P2 . . . . .  Pn so that they are in clockwise angular order about pl .  
qt"-Pl (qj . . . . .  qk are the extreme points found so far) 

q2"-P2 
j.--1 
k'--2 
for i.---3 to n 

temp.--qk 
while Pi is to the left of  the segment from qk--~ tO qk 

k ' - - k -  1 
exit while i f j  = k 

end while 
i f j  = k 

ifpi  is to the left of  the segment from temp to qj 
stop (the set is not  hemispherical) 

else 

qj+ l ~ ' p i  
qj+ 2,--temp 
k.---j+ 2 

end if 
else 

k ' - - k +  1 

qk*---Pi 
while Pi is to the left of the segment from qj to qj+l 

j , - - j +  I 
end while 

end if 
end for 

The differences between this algorithm and Gra- 
ham's planar algorithm are: (a) in the planar algorithm, 
Pl is a known extreme point (e.g. a coordinate extre- 

(2) Proof that it detects nonhemispherical sets cor- 
rectly. This follows from the following observation: if 
X is a hemispherical convex polygonal region and p is 



410 D. P. ANDERSON 

a point, then X 1.3 {p} is nonhemispherical iffp lies in 
the opposite of X, that is, iffp lies on the left of all the 
clockwise-directed edges of X. 

The worst-case time used by both the planar and 
spherical algorithms is O(n log(n)); the O(n log(n)) por- 
tion arises from sorting the points into angular order, 
and the rest of the calculation is O(n). Under certain 
statistical assumptions on the original set of points, the 
distribution of the set of angles will satisfy the require- 
ments of linear-time sorting algorithms such as bucket 
sort, reducing the expected runtime to O(n). Other 
convex hull algorithms with O(n) expected time [2, 10] 
could also be adapted to the sphere. 

4. THE SPHERICAL SMALLEST ENCLOSING 
CIRCLE PROBLEM 

The spherical smallest-circle problem is as follows: 
Given a hemispherical set X of points on the sphere, 
what is the small circle of least radius such that X is 
contained in the union of the circle and its interior? 
Note that i fXis not hemispherical, no such circle exists. 

The analogous planar problem is: Given a finite X 
set of points in the plane, what is the smallest circle 
that encloses X?. In both the planar and spherical cases, 
the smallest circle is determined by the two farthest 
points in X, or by three points. This suggests a O(n 4) 
worst-case exhaustive search algorithm. A more clever 
algorithm, to which we will return later, reduces the 
worst-case time to O(n2). An O(n log(n)) worst-case 
algorithm, based on Voronoi diagrams, is reported by 
Shamos [ 11 ]. 

4.1. Voronoi diagrams and smallest enclosing circles 
The closest-point Voronoi diagram (V~(X) of a 

planar set X = {Xl . . . . .  xn} is defined as follows: let 
Ri be the region in the plane consisting of those points 
which are closer to xi than to any xj, j =~ i. It is easy 
to see that the Ri are disjoint, polygonally-bounded 
regions which, together with their boundaries, cover 
the plane. V~(X) is the graph formed by the boundaries 
of the R~. The farthest-point Voronoi diagram V/(X) 
is defined similarly, with "closest" replaced by "far- 
thest." 

If X is a set of points on the sphere, the spherical 
closest- and farthest-point Voronoi diagrams of X are 
defined similarly, with "plane" replaced by "sphere." 
An example of a closest-point spherical Voronoi dia- 
gram is shown in Fig. 3. Closest- and farthest-point 
spherical Voronoi diagrams are related as follows: 

Lemma 1. 
Let X be a set of spherical points, and let X'  be the 

opposite of X. Then 

V/(X) = V~(X'). 

In words, the farthest-point Voronoi diagram of a set 
is the closest-point diagram of its opposite. 

Proof Observe that 

d(x, p) = 7r - d(x', p), 

Fig. 3. The closest-point Voronoi diagram for four points on 
the sphere. 

since the distances are complementary arcs of the half- 
circle through x, p and x'. Now p is in the ith region 
of the closest-point diagram of X iff 

d(p, xi) < d(p, xj) for all j 4= i, (8) 

which, using (7), is equivalent to 

d(p, x~) > d(p, x~) for all j ÷ i, (9) 

which means p is in the ith region of the farthest-point 
Voronoi diagram ofX' .  • 

It is known [11] that the largest possible number of 
vertices and edges of the closest- or farthest-point planar 
Voronoi diagram of a set of n points is O(n). This is 
true in the sphere also. 

If X is a set of n planar points for which F,~(X) is 
known, the smallest circle enclosing X can be found 
in O(n) time as follows (see [11]): 

(1) For each edge S of Vy(X), see if S contains the 
midpoint of the two points in X which determine it. 
If so, these two points determine the smallest circle 
and their midpoint is its center. 

(2) Otherwise, for each vertex v of Ff(X), find the 
distance rv from v to any of the three (or more) points 
in X which determine it (v is equidistant from these 
points). Clearly the circle centered at v with radius rv 
encloses X. The vertex for which ro is minimal is the 
center of the smallest circle enclosing X. 

This procedure works in the spherical case as well, 
as long as X is hemispherical. The "midpoint" in step 
(1) must be the one defined in Section 2 (note that the 
opposite of this point is also equidistant from the two 
points). In step (2) we only consider those vertices v 
for which r~ < 7r/2. 

4.2. Computing spherical Voronoi diagrams 
For the purpose of finding enclosing circles we are 

interested in computing the farthest-point spherical 
Voronoi diagram of a set of points. By Lemma 1 this 
is equivalent to finding the closest-point diagram of 

(6) the opposite of a set, and since this is easier to visualize 
we will describe a closest-point algorithm. 

The O(n log(n)) algorithm for computing the closest- 
or farthest-point Voronoi diagram of a set X ofn points 
in the plane, given by Shamos in [11], can be adapted 
to the sphere. The planar algorithm uses a divide-and- 

(7) conquer approach based on a procedure for merging 
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the Voronoi diagrams of two sets which are separable 
(i.e. have disjoint convex hulls), in time proportional 
to the sum of the sizes of the sets. Given a set, the 
algorithm splits it in half around the median x coor- 
dinate (thusensuring that the subsets are separable), 
recursively finds the Voronoi diagram of each subset, 
then merges the diagrams. 

First we give a rough description of a procedure for 
merging the closest-point Voronoi diagrams of two 
spherical sets X and Y, under the assumptions that X 
and Y are hemispherical and separable. As in the planar 
case, this involves constructing a piecewise linear curve 
P consisting of those points equidistant from X and Y. 
Whereas in the plane P goes to infinity in two direc- 
tions, on the sphere it is a simple closed curve. P sep- 
arates X from Y. I~(X LI Y) is formed by removing 
the portions of ~ ( X )  which lie on the other side of P 
from X, removing the portions of V~(Y) which lie on 
the other side of P from Y, and joining the remaining 
portions of V~(X) and V~(Y) with P. 

P is computed as follows (B(a, b) denotes the per- 
pendicular bisector of a and b, oriented so that it crosses 
the segment from a to b going from fight to left): 

1. Find points Xo ~ X, Yo E Y of minimal distance. 
This can be done in O(IXI + [Y[) time, using an al- 
gorithm analogous to the planar algorithm given in 
[4]. The idea is to start with an arbitrary point ao ~ X, 
find the closest point bo E Y, then find the point al 
E X which is closest to bo, and so forth until fixed 
points are found. It is necessary to traverse each convex 
hull in one direction only. 

2. Let P0 be the midpoint ofxo and Yo. Pwiil initially 
be extended from P0 in the direction B(xo, Yo). Let 
k = 0 (k is the iteration number). Let Ao and Bo be the 
Voronoi regions (relative to X and Y, respectively) in 
which Xo and Y0 lie. 

3. In general, we have computed a vertex Pk on P, 
and are extending P along a ray R, within Voronoi 
regions Ak and Bk corresponding to points Xk and Yk. 
If R hits the boundary of Ak before the boundary of 
Bk, let Pk+~ be this point of intersection, let Ak+~ be the 
Voronoi region on the other side of the boundary, let 
xk+l be the corresponding point in X, and let Bk+l = Bk 
and Yk+~ = Yk. P will now be extended along B(xk+~, 
Yk+~). Proceed analogously if R hits the boundary of 
Bk first. 

4. The procedure stops when Ak = Ao and Bk = Bo. 
This occurs when P has wrapped around to its starting 
point Po- Otherwise increment k and go to step 3. 

Given this merging procedure, the closest-point 
spherical Voronoi diagram of a set X can be computed 
as follows: 

1, Choose some point p such that neither p nor its 
opposite is in X, and order the points in X according 
to their angle about p. 

2, Choose a great circle containing p but disjoint 
from X. This circle divides X into sets Xo and X~. 

3. Divide Xo into pairs of  points which are adjacent 
in the angular order. The Voronoi diagram of each 
pair is their perpendicular bisector. There may be a 
left-over single point, whose Voronoi diagram is null. 
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4. Merge the Voronoi diagrams for adjacent pairs 
into diagrams for quadruples, and so forth until VAXo) 
and Vc(X,) have been obtained. 

5. Merge VAXo) and V~(X0 to obtain V~(X). Note 
that at each stage we are merging the diagrams of sets 
which are hemispherical and separable, so the previous 
procedure can be used. 

4.3. A simpler spherical smallest circle algorithm 

The relative complexity of the Voronoi diagram al- 
gorithm, together with the availability of  a fast, simple 
convex hull algorithm and the possibility that in many 
cases the number of extreme points grows as ~ or less, 
suggest that a simple smallest circle algorithm, even of 
O(n 2) time, may be preferable to the Voronoi diagram 
approach. 

Elzinga and Hearn [6] propose an algorithm which 
starts with a small circle and iteratively enlarges it until 
the optimum is found. We will give a slightly simpler 
algorithm which starts with a circle enclosing all the 
points, and iteratively shrinks it. The algorithm is based 
on the following 

L emma  2. 
If X is a finite set of points in the sphere, and C is a 

small circle which encloses X, then C is the minimal 
circle enclosing X iff every closed semicircle of C in- 
tersects X. 

Proof. Suppose C encloses X, and D is a closed semi- 
circle of C disjoint from X. Let a and b be the angular 
extrema of X fq C. Let p be the midpoint of a and b, 
and let q be (p - c), where c is the center of C. For 
each x ~ X, let a~ be the largest a such that a < 1 and 
the circle with center c + aq passing through a and b 
contains x. Note that ax > 0 for all x ~ X. Let 
= min ax. Then the circle centered at c + ~q passing 

~ x  
through a and b encloses X, and is smaller than C. • 

This motivates an algorithm which starts with an 
enclosing circle and iteratively shrinks it using the pro- 
cedure of the proof of Lemma 2, until the condition 
of Lemma 2 is satisfied. Although this approach will 
work with an arbitrary set of points, a more efficient 
version is possible i fX is given by the vertices x0 . . . . .  
Xk-l, Xk = XO of its convex hull, traversed in clockwise 
order. 

I. Let x~ be an arbitrary point in X. Find the point 
in X which is farthest from x,; renumber if necessary 
so that this point is Xo. Let Co be the circle centered 
at x~ with radius d(xo, x,), and let Co = x~. 

2. Let x ~  and x,~o be the points in X fq Co which 
are closest, in the clockwise and counterclockwise di- 
rections, respectively, to the point in Co opposite Xo. 
lfxo is the only point in X N Co, let CWo = k and CCWo 
= 0. In all cases CUb > CCWo. Let j  = 0 ( j  is the iteration 
number). 

3. If Q does not lie strictly to the right of the seg- 
ment from xc~ and xccw~, then stop; Cj is optimal by 
Lemma 2. 

4. For each x~, ccwy < i < cwj, define ax, as in the 
proof of Lemma 2. Viewing all points as unit vectors, 
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Fig. 4. One iteration of the smallest-circle algorithm of section 4.3. 

a~, can be computed as the maximum of l and the 
root of the linear equation 

where 

(Cj + aq)" x~. s = (C.s + aq).  x~, (10) 

q = (x<wj + x,~,~j) - cj .  (1 !) 

L e t ~ =  rain a ~ . N o t e t h a t a ~ =  1 f o r 0 < i < _ c c w  
ccw<i<cw 

and cw < i < k so these need not be computed. 
5. Let Cj+l, the new center, be c~ + ~q normalized 

to unit length, and let rj+j = d(Cj+l, x~j) be the new 
radius. Let cwj+i be least such that d(cj+~, x~j+~) = rj+l 
and x~j+, is to the left ofq. Let ccwi+~ be greatest such 
that d(cj+l, x ~ )  = rj+~ and x~+~ is to the fight ofq. 
Increment j. Go to step 3. 

The algorithm generates a sequence of circles, each 
of which encloses X, is determined by two or three 
points of X, and is smaller than the previous circle (see 
Fig. 4). It terminates only when the optimality con- 
dition is met. These facts imply its correctness. 

The work at each iteration is proportional to ccw 
- cw; this difference is at most n and decreases by at 
least 1 at each iteration, so the worst-case performance 
is O(~). The average performance in practice will 
probably be better; it is reasonable to expect that the 
difference ¢cw - cw will shrink, on the average, by 
constant ratio at each iteration, in which case the run- 
time will be O ( n ) .  

5. DISCUSSION 
We will now discuss the relative merits of the al- 

gorithms A, B and C (see the Introduction), both in 

terms of their performance and their implementation 
difficulty. We have implemented algorithm C; the pro- 
cedure is short (300 lines) and uses only simple data 
structures. We have not implemented the spherical 
Voronoi diagram algorithm, but we suspect that it 
would be longer and more complex. 

Algorithms B and C consist of a convex hull phase 
followed by a smallest-circle phase. The average per- 
formance of these algorithms depends on how the dis- 
tribution of h changes as n increases, where n is the 
size of the original set Xand h is the number of spherical 
extrema of the normalized set Y. If the object is a n- 
point approximation to a circle then h = n. If the object 
has a fixed silhouette and detail is added only to the 
middle, then h = O(1). These are the extreme cases; 
more useful estimates can be obtained either by looking 
at large sets of real-world data, or by considering ran- 
dom distributions of input data. We will show that 
under certain assumptions, the average total runtime 
may be O(n) even if the smallest-circle calculation takes 
O(n log(n)) or worse. 

For algorithm B, let us assume that the convex hull 
algorithm runs in O(n) average time for a particular 
input distribution, and that it is followed by the 
O(h log(h)) Voronoi diagram algorithm for finding the 
smallest enclosing circle. Bentley and Shamos show 
[2] that if 

E[h] =O(nP), p < 1, (12) 

then 

E[h log(h)] = O(nq), q < I. (13) 
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Hence if(12) holds, the average total time of algorithm 
B is still O(n). 

It is known [5] that when n points are chosen from 
a uniform distribution on a planar disk, the expected 
number of extreme points is 

E[k] = 0(nl/3). (14) 

This suggests that if object points are chosen randomly 
from a truncated circular cone emanating from the 
viewpoint (so that their projections on the sphere are 
uniformly distributed over a circle on the sphere) then 
eqn (12) will hold if the angle of the cone is sufficiently 
small. Similarly, if the points are chosen from a bi- 
variate normal distribution in the plane, then 

E[h] = O(logl/2(n)), (15) 

which also satisfies (12). Hence for some input distri- 
butions the average time of algorithm B is O(n). 

For algorithm C, suppose the O(n) expected-time 
convex hull algorithm is followed by an O(h 2) expected- 
time smallest-circle algorithm. Then the expected time 
for the smallest-circle computation is 

E[h 2] = Var(h) + E[h] 2 (16) 

so the total time for algorithm C is O(n) as long as 
Var(h) = O(n) and 

E[h] = O(~), p < ½. (17) 

Unfortunately, there apparently no results concerning 
the variance of h for interesting point distributions. It 
should also be pointed out that the smallest-circle al- 
gorithm of Section 4.3 may be O(n) average for some 
distributions, in which case algorithm C is also O(n) 
average regardless of the distribution of h. 

6. CONCLUSION 

We have shown that finding the optimal orientation 
reduces to the spherical smallest-circle problem, and 
have given three algorithms for efficiently solving this 
problem. The third of these (algorithm C) stands out 
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as being both simple and fast. Such a procedure would 
be a useful addition to any three-dimensional graphics 
software system. 

We have dealt only with the case of a single object 
for which a feasible orientation exists. This may be too 
limited for some applications. For example, if there 
are several objects X~ one might attach weights w~ to 
each object, and define the viewing direction D to be 
the solution of 

n 

min ~ w~flv, Xi), ( i 8) 
I v [ - I  i - I  

wheref(v, X3 is some monotonic function of the angle 
between v and the center of the minimal circular cone 
enclosing X~. Varying these weights continuously would 
generate smooth "pans" between different objects. Note 
that this method requires that there be a feasible ori- 
entation for each object, but not necessarily for the 
union of the objects. 
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